
Concepts for the Stealth Windows Rootkit
(The Chameleon Project)

Joanna Rutkowska
joanna@mailsnare.net

September 2003

Purpose
Many people do not realize the real danger from rootkit technology. One reason for this is probably
that publicly available rootkits for Windows OS are relatively easy to detect by conventional
methods (i.e. memory scanning based). However, we can imagine some techniques of rootkit
implementation, which will be undetectable by these methods, even if the rootkit concept will be
publicly available… In order to convince people that traditional rootkit detection is insufficient it
would be desirable to have a working rootkit implementing such sophisticated technology. Besides
it would be fun.

Assumptions
The rootkit, which we are going to discuss, should provide only two features:
 Process hiding
 Network Covert Channel

Rootkit should be undetectable by memory scanning-based methods, with the assumption, that
everybody knows the technique it exploits. In this way it should be similar to modern cryptographic
algorithms, where the strength of the cipher is not based on the obscurity of the encrypting method
but on the secret key.

Rootkit should work on Windows 2000 and 2003 systems. Server systems are of the primary
concern, since rootkit is not going to employ any mechanisms to survive system restart, because
such actions cannot be made stealth enough (vide Forensic Analysis).

Traditional process hiding techniques
There are many techniques for hiding processes in the system. Lets take a brief look at them and
discuss their weaknesses:

 DLL infection (file replacement) – new DLL (NTDLL.DLL for e.g.) is provided with some
functions patched (like ZwQuerySystemInformation). Easily detectable by file system integrity
checkers (provided they are not using DLL, but direct int 2eh calls)1.

 API hooking – almost the same as above, but no file replacement is needed. Infection is done
by means of OpenProcess(), WriteProcessMemory(), etc… Example rootkit of this kind is
HackerDefender [1]. There is similar problem here to the above, although the tool for checking
integrity of process address space should be little more sophisticated [2]. There is also another
method of disclosing all hidden process by this and above methods. Administrator can use a

1 It would be interested if someone will check such commercial products like Tripwire or Intact, if they are using
NTDLL functions to read files or not.

1

small program which will call ZwQuerySystemInfo(), not through the NTDLL, but directly
through int 2eh. This is the problem of all userland rootkits, which tries to hide some objects.
They can always be uncovered in this way.

 “Thread injection”– in this technique there is no additional process creation. Rootkit chooses
appropriate “legal” process, and inserts a new thread into this process. This thread is doing
something useful for the attacker. The problem here is the flexibility. Although some task could
be implemented this way, it would be probably impossible to have a running hidden console
and the possibility to start new different, arbitrary programs from this console. It is of little
chances that some, even medium-complicated programs, could be made running this way.

 Kernel service hooking. This is a classic approach, which involves hooking some well known
kernel services and cheating about the results they return (see [3] for some code examples). It
can be implemented in several variants:

1. Service Table hooking: probably the most popular approach, which is also easy
detectable by comparing ST with the copy from the “clear” system.

2. IDT hooking: similar to the above, similar disadvantages.
3. Raw kernel code change: instead of changing pointers to code, we just changing the

code itself, by inserting for e.g. some ‘jmp’ instructions.
4. “Strange” pointers change: we are changing here some uncommon code pointer (in

contrast to ST or IDT), in order to change the execution path of some kernel services.
There are many such pointers, for example pServiceDescriptorTable in _KTHREAD
object.

Rootkit implementing techniques 1-3, are relatively easy to detect by calculating hashes on
kernel memory, see again [2] for some details. The 4th approach is little more problematic, since
its probably impossible to spot all the valuable (from the attacker’s point of view) pointers in
the kernel, which should be checked, and their change means system compromise, not the daily
kernel activity.

We will be back to 4th method weaknesses in a while.

 Kernel data manipulation. Instead of changing kernel code (or execution path), the idea here
is to just unlink the process from the PsActiveProcessLinkHead list. This list is not used by the
scheduler code, so after unlink, process (or its threads actually) still gets the CPU for execution,
while the process object is hidden. To detect hidden processes in this way, we have to read the
lists which the scheduler actually uses.

Scheduler structures
Scheduling in Windows is thread-based, so there are lists which group thread in different state
(running, sleeping, etc). If rootkit unlinked threads of the hidden process from this lists too, then
those threads wouldn’t get any CPU time, make such rootkit useless. A simple tool, klister, for
reading such internal scheduler lists has been released. It should be noted that this tool is also
capable of detecting hidden processes by all the previously described methods (including 4th one
from the previous paragraph).

2

Author has currently identified three lists used by the scheduler to maintain the threads, they are2:
 KiDispatcherReadyListHead (which is actually a table of 32 lists, for every priority each),
 KiWaitInListHead and KiWaitOutListHead.

The last two lists are very similar in their nature and they group the threads which are in a waiting
state3. Although the hooks of the lists are different, all the lists are implemented by the
WaitListEntry field in the KTHREAD object (offset +0x5c).

“Innocent threads” concept
It should be obvious now, that we need new, more stealth, technique for hiding processes in the
system. What we want, is that all threads from the hidden process, disappear from all this scheduler
lists. But we can not remove threads from these lists, since then, the process won’t get any CPU
time…

The idea is to make the threads of the hidden process look like threads which belong to some
system process like winlogon.exe for example. Of course we should first unlink the hidden process
object from PsActiveProcessLinkHead, in exactly the same way as fu rootkit does it (see [4]).

We should then cheat when somebody access the page where such thread object is stored. However,
we should not cheat when the access to this page comes from the scheduler code. This means that
Page Fault (#PF) handler should be hooked. PF handler can be hooked either by changing entry in
IDT table either by replacing the first few instructions of the original system PF handler
(KiTrap0E). Since IDT hooking is easy detectable, it would be better to use the second approach.
This can be also detected by utility similar to Tripwire, but running in kernel memory space. We
will back to this issue later and discuss how to make such changes undetectable.

We have the following picture then:

We also need to mark all the pages, which we are going to cheat about, so that access to those pages
will cause #PF exception. This can (probably) be done by clearing the present bit in the appropriate
page table entry. Rootkit’s #PF handler should determine then, weather the access come from the

2 The symbols are not exported, but addresses cab be obtained from the debug symbol files.
3 Author didn’t investigate what is the real difference between these two lists.

3

#PF

Original
system #PF
handler

jmp

if (page not marked by rootkit)
jmp KiTrap0E;

if (saved_EIP in scheduler code)
return original_page;

else
return fake_page;

IDT

Rootkit’s PF handler:

KiTrap0E:

scheduler code or not, and return either the original page contents either the fake one (for e.g. with
the contents of fake thread object which looks like thread from winlogon.exe).

The smart way of deciding weather the access came from scheduler or not should be researched4.
The first idea here is just to check if EIP5 belongs to the address space occupied by the ntoskrnl.exe
module (its code section to be more precise).

Rootkit should also be able to decide weather the page with present bit cleared was marked by
rootkit or by OS. This should be probably best solved by storing some magic tag in the page
contents (not page table entry).

We should also modify NtCreateThread in such a way that if a hidden process will create new
thread, the page where its object is held will be marked by clearing the present bit in the page table
entry. Thanks to this, when we start new process, we do not have to worry how many threads (and
when) it will create.

Fake threads
Ok, so how does the fake thread object should look like? We have much flexibility here, because
we know that whatever we put here, OS won’t use it for anything important. That’s why we can
probably just chose some arbitrary thread object from some popular system process, like
svchost.exe, and copy its contents as a new fake thread object. However, we should change some
fields, so there were not two exactly the same threads in the systems (this could be easy detectable).
It should be further investigated what files should be changed to make such thread looking like just
another thread of some system process.

Hiding the code changes
The approach presented up to this point has one weak point. The administrator can detect that
someone has changed the first few bytes of the original Windows #PF handler (KiTrap0E).

We cannot make the page in the memory where the original PF handler resides inaccessible (by
clearing the Present bit) because of the obvious recursion problem here.

Probably the only way to solve this problem is to use the Debug Resisters of the Intel Processors.
We can set the DR06 to point at the beginning of KiTrap0E, where we put “jmp” instructions to
jump into rootkit PF handler. We should also set some bits in DR7 (aka Debug Control Register) to
cause #DB exception when read access to the address pointed by appropriate DRx register. Rootkit
should then provided its own #DB handler, again by inserting some “jmp” instructions at the
beginning of the original system #DB handler – KiTrap01. This modified bytes should also be
protected by Debug resister (DR1). No recursion should occur here, because we set the breakpoint
here for data read/write, and not on instruction fetches. The situation is depictured below.

4 It should be also noted, that not only scheduler can access the thread objects, that’s why all the OS modules that make
use of them should be identified (for e.g. hal.sys, ntoskrenl.exe, etc…) and all access from their code sections should
see the original, not faked, objects.
5 The one saved by during exception.
6 It should be noted that one DRx register can protect up to four bytes. So, care should be take to modify as little bytes
as possible, since we have only four debug address registers (DR0, DR1, DR2 and DR3).

4

In addition, rootkit should set GD flag in DR7 in order to protect access to DRx registers. When
GD is set, any access to DRx registers causes #DB to be generated, and BD flag in DR6 to be set.
DB handler can detect such tries and either ignores them, either make some action, like restarting
the machine or something more sophisticated. See the next paragraph for more details about this.

Protecting DRx registers
Using Debug Registers together with #PF hooking to protect arbitrary memory areas should solve
the problems of detecting rootkit by memory scanning7. However, the usage of DRx registers opens
one more way for detecting our rootkit. Please note that we are using two out of four available
Debug Address Registers. We can imagine then a rootkit detector which tries to make use of the all
four DRx registers (by setting some test breakpoints and check weather they are hit or not). This
would either break our rootkit protection scheme (if rootkit did not set GD flag in DR7) either
detector will realize that test breakpoint has not been hit.

As it was said above, an extremely easy way to get around this is to execute int3 instruction when
detected BD in DR6. This way, it should be impossible to write detector which would say: ”rootkit
detected”. The only thing the detector could do, is to say: “watch out for system reboot, if so
assume rootkit in the system”. Of course such detector is probably unacceptable on some
production systems…

However, this is not an elegant solution. We need something more sophisticated.

7 See next paragraph about polymorphism to complete the discussion of memory scanning for rootkit.

5

#PF (0Eh)

Original
system #PF
handler

jmp

IDT

KiTrap0E:

Rootkit’s #PF
handler

#DB(01h)

Original
system #DB
handler

jmp

KiTrap01:

Rootkit’s #DB
handler

........

....

.......

...........

NtCreateThread:

jmp Mark new thread
of hidden
process

DR0

DR1

Protected by
#PF trick,
DRx not
necessary
here.

More intelligent solution would be to emulate Debug registers, when detected that some 3rd party
software tries to use DR0 or DR1 (which are using by rootkit). In most cases this could probably be
done by exploiting already hooked #PF handler. However this approach should be investigated a
little bit more, especially several special cases should be considered: when 3rd party software would
like to set DRx at:
 KiTrap01
 KiTrap0E
 NewDBHandler
 NewPFHandler

#DB handler algorithm
Here is the algorithm for simple #DB handler:

rootkit_DB() {
 if (DR6.BD==1) int3 // reboot :)

 if (restore0) {

fake_bytes0 [DR0]
restore0 := false
DR7 disable DR3 breakpoint

 }
 if (DR6.B0==1){ // (read) access to address held in DR0

original_bytes0 [DR0]
restore0 := true
DR3 := saved_EIP + offset_to_next_instruction(saved_EIP)
DR7 enable DR3 breakpoint (on eXec)
return;

 }

 if (restore1) {

fake_bytes1 [DR1]
restore1 := false
DR7 disable DR3 breakpoint

 }
 if (DR6.B1==1){ // access to addr held in DR1

original_bytes1 [DR1]
restore1 := true
DR3 := saved_EIP + offset_to_next_instruction(saved_EIP)
DR7 enable DR3 breakpoint (on eXec)
return;

 }
}

Hiding additional code and data: polymorphism
There is one more thing which we should take care of. Even though we probably be able to cheat
about all the modification we made to the existing kernel code, we should be aware the we are
adding some new code to the kernel memory. Of course, these new code, can look like dynamic
buffer, but, when the administrator knows the exact version of the rootkit binary, she is able to
detect the rootkit’s additional code by just pattern searching… This is not good.

It should be noted that some of our new code cannot be held on marked pages (with present bit
cleared). The example of this kind is our new PF handler.

It seems that the only remedy to this problem is to have polymorphic code generator to some
rootkit’s functions. Not all, however, only for those which cannot be held on the marked pages.

6

Polymorphic generator should be further investigated, some information about this subject can be
found at [5].

Covert Channel
Even best process hider would be useless without the possibility to communicate with the hidden
processes. On the other hand, every communication effort can betray the hidden process. A good
covert channel should be then implemented as a addition to the process hider.

There are currently some ideas around for implementation of TCP/IP based covert channel, like [6].
They should be further investigated. Network IDS resistance is the priority over the speed.

It would be desirable to define a good interface between covert channel module and the (hidden)
process. Thanks to this, it would be possible to choose appropriate covert scheme depending on the
role of the machine which is infected (WWW server, internal file server, workstation, etc…).

It is expected that the covert module will be actually some code residing in the kernel (something
like NDIS driver). This code will take care of creating and receiving all network traffic which will
be necessary to implement a given covert channel. This module should create three, unnamed,
kernel objects: cchStdIN, cchStdOUT and cchStdERR. The PEB of the hidden process (actually
PEB.ProcessParameters.Std* fields) should be modified in such a way they will point to the
objects created by covert module. This way no changes to the hidden application are needed
(assuming that is a console application of course). The covert channel module can also be easy
replaced by some other, depending on the covert channel requirements.

Putting it all together
The most convenient way to implement this rootkit will be a kernel driver. However it would be
good to do it in such a way, that after unloading the driver rootkit will remain in the system. It

7

kernel

userland

...

covert
channel
module

cchStdIN

cchStdOUT

cchStdERR

PEB

Hidde
n

TCP/IP traffic

means that we should use other method for allocating memory for additional code (like new #PF
and #DB handlers). It should be investigated if it would be enough to just put the code in the
allocated dynamic buffers.

It seems that userland client program for the rootkit is unnecessary. Such utility is never enough
stealth. All the configuration activities should be done during compilation phase. This configuration
includes such parameters like:

 process(es) to be hidden. This can be done by specifying the program name (like
st34lthcmd.exe)

 the covert channel module to be used.
 covert channel module password.

Alternatively configuration can be done through the covert channel session (see [3] for similar
concept). Additional kernel module will be needed, which will be seated between the Covert
Channel Module and ccmStd* object ends. It should be investigated if such feature is really
necessary however.

Things such uploading or downloading files form the target machine, can be implemented by the
hidden application, and are beyond the scope of the rootkit considerations.

The Future
This paper explains only some ideas behind implementation of the pretty stealth rootkit on
Windows based systems. In most cases no proof of concept code has been written yet to check if the
presented ideas are really implementable. More work should be done to investigate such big issues
like covert channel design and good polymorphic generator for some rootkit functions.

References
[1] Holy_Father, Hacker Defender rootkit, http://www.rootkit.host.sk/.

[2] James R. Butler II, Detecting Compromises of Core Subsystems and Kernel Functions in Windows
NT/2000/XP, M.S. thesis, University of Maryland, Baltimore County, 2002.

[3] Greg Hoglund, NT ROOTKIT, telnet://rootkit.com.

[4] James Butler, Jeffrey L. Undercoffer and John Pinkston, HIDDEN PROCESSES: The Implication for Intrusion
Detection, Proceedings of the 2003 IEEE Workshop on Information Assurance, United States Military
Academy, West Point, NY, June, 2003.

[5] 29A magazine, http://www.29a.host.sk/.

[6] Simple Nomad, Covering Your Tracks, Black Hat USA, July 30-31, 2003.

8

